MIDTERM 1 (RIBET) - ANSWER KEY

PEYAM RYAN TABRIZIAN

(1) $A^{-1}=\left[\begin{array}{cccc}1 & 0 & -1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 3 & -1 & -2 & 2\end{array}\right]$
(2) (a) FALSE

Take: $A=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$. Then: $A B=\left[\begin{array}{lll}6 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$.
Which is again an elementary matrix!
(b) FALSE

Take A to be the zero matrix and B any nonzero vector!
(c) FALSE

Take $A=\left[\begin{array}{ll}1 & 0\end{array}\right]$ and $B=\left[\begin{array}{l}1 \\ 0\end{array}\right]$. Then $A B=[1]$, which is invertible, even though neither A or B is invertible (they aren't even square matrices!)
(d) TRUE (see page 156, the null-space of an $m \times n$ matrix is always a subspace of \mathbb{R}^{n}.
(e) Ignore this. (we'll see this in chapter 4)
(f) FALSE (what if $\mathbf{v}_{\mathbf{1}}=\mathbf{v}_{\mathbf{5}}$?)
(3) $b=0$. (see next page for an explanation)

Form the augmented matrix: $\left[\begin{array}{ccc}1 & 3 & -1 \\ 2 & 4 & b \\ 3 & 4 & 2 \\ 4 & 5 & 3\end{array}\right]$. Row-reduce until you get the matrix $\left[\begin{array}{ccc}1 & 3 & -1 \\ 0 & 0 & b \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$. Now, in order for the third column to be in the span of the first two, we need the second row to be a row of zeros. Hence, we require $b=0$.

