MIDTERM 1 (RIBET) - ANSWER KEY

PEYAM RYAN TABRIZIAN

(1)
$$A^{-1} = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 3 & -1 & -2 & 2 \end{bmatrix}$$

(2) (a) FALSE

Take:
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. Then: $AB = \begin{bmatrix} 6 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

Which is again an elementary matrix!

(b) FALSE

Take A to be the zero matrix and B any nonzero vector!

(c) FALSE

Take $A = \begin{bmatrix} 1 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. Then $AB = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, which is invertible, even though neither A or B is invertible (they aren't even square matrices!)

- (d) **TRUE** (see page 156, the null-space of an $m \times n$ matrix is always a subspace of \mathbb{R}^n .
- (e) Ignore this. (we'll see this in chapter 4)
- (f) **FALSE** (what if $\mathbf{v_1} = \mathbf{v_5}$?)
- (3) b = 0. (see next page for an explanation)

Date: Monday, September 12th, 2011.

PEYAM RYAN TABRIZIAN

Form the augmented matrix: $\begin{bmatrix} 1 & 3 & -1 \\ 2 & 4 & b \\ 3 & 4 & 2 \\ 4 & 5 & 3 \end{bmatrix}$. Row-reduce until you get the ma- $\begin{bmatrix} 1 & 3 & -1 \end{bmatrix}$ trix $\begin{bmatrix} 1 & 3 & -1 \\ 0 & 0 & b \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$. Now, in order for the third column to be in the span of the first two, we need the second row to be a row of zeros. Hence, we require b = 0.